Standard bi-quadratic optimization problems and unconstrained polynomial reformulations
نویسندگان
چکیده
A so-called Standard Bi-Quadratic Optimization Problem (StBQP) consists in minimizing a bi-quadratic form over the Cartesian product of two simplices (so this is different from a Bi-Standard QP where a quadratic function is minimized over the same set). An application example arises in portfolio selection. In this paper we present a bi-quartic formulation of StBQP, in order to get rid of the sign constraints. We study the first and second-order optimality conditions of the original StBQP and the reformulated bi-quartic problem over the product of two Euclidean spheres. Furthermore, we discuss the one-to-one correspondence between the global/local solutions of StBQP and the global/local solutions of the reformulation. We introduce a continuously differentiable penalty function. Based upon this, the original problem is converted into the problem of locating an unconstrained global minimizer of a (specially structured) polynomial of degree eight.
منابع مشابه
Unconstrained formulation of standard quadratic optimization problems
A standard quadratic optimization problem (StQP) consists of finding the largest or smallest value of a (possibly indefinite) quadratic form over the standard simplex which is the intersection of a hyperplane with the positive orthant. This NP-hard problem has several immediate real-world applications like the Maximum-Clique Problem, and it also occurs in a natural way as a subproblem in quadra...
متن کاملQuadratic reformulations of nonlinear binary optimization problems
Very large nonlinear unconstrained binary optimization problems arise in a broad array of applications. Several exact or heuristic techniques have proved quite successful for solving many of these problems when the objective function is a quadratic polynomial. However, no similarly efficient methods are available for the higher degree case. Since high degree objectives are becoming increasingly...
متن کاملCompletely positive reformulations for polynomial optimization
Polynomial optimization encompasses a very rich class of problems in which both the objective and constraints can be written in terms of polynomials on the decision variables. There is a well established body of research on quadratic polynomial optimization problems based on reformulations of the original problem as a conic program over the cone of completely positive matrices, or its conic dua...
متن کاملA polynomial case of unconstrained zero-one quadratic optimization
Unconstrained zero-one quadratic maximization problems can be solved in polynomial time when the symmetric matrix describing the objective function is positive semidefinite of fixed rank with known spectral decomposition.
متن کاملGlobal optimization of rational functions: a semidefinite programming approach
We consider the problem of global minimization of rational functions on IR (unconstrained case), and on an open, connected, semi-algebraic subset of IR, or the (partial) closure of such a set (constrained case). We show that in the univariate case (n = 1), these problems have exact reformulations as semidefinite programming (SDP) problems, by using reformulations introduced in the PhD thesis of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 52 شماره
صفحات -
تاریخ انتشار 2012